N39 – Acid Base

Henderson-Hasselbalch "He-Ha"

N39 – Acid Base

Henderson-Hasselbalch "He-Ha"

Target: I can identify when a solution is a buffer and can perform calculations for buffered solutions.

Buffer - A solution that resists a change in pH when either hydroxide ions or protons are added.

Buffered solutions contain either:

- **A weak acid and its matching salt**
- **A weak base and its matching salt**
- **A weak acid and ½ the amount of a strong base**
- **A weak base and ½ the amount of strong acid**

Buffer - A solution that resists a change in pH when either hydroxide ions or protons are added. *Because those end up*

Buffered solutions contain either:

• **A weak acid and its matching salt**

with leftover weak A/B and forming some conjugate ions (so you don't need to add a salt)!

- **A weak base and its matching salt**
- *A weak acid and ½ the amount of a strong base*
- *A weak base and ½ the amount of strong acid*

Acid/Salt Buffering Pairs

The salt will contain the anion of the acid, and the cation of a strong base (NaOH, KOH)

Base/Salt Buffering Pairs

The salt will contain the cation of the base (base plus an extra hydrogen), and the anion of a strong acid (HCl, HNO³)

Titration of an Unbuffered Solution

Titration of a Buffered Solution

What do you notice about the shape of the curve?

Comparing Results

- **In what ways are the graphs different?**
- **In what ways are the graphs similar?**

Comparing Results

A buffered solution "resists changes in pH" as you add the acid or base! Slower pH change.

One way of doing these calculations

Rearrange your Law of Mass Action:

$$
Ka = \frac{[H^+][A^-]}{[HA]} \rightarrow [H^+] = Ka \frac{[HA]}{[A^-]} \rightarrow = Ka \frac{[Acid]}{[conj.Base]}
$$

salt

$$
Kb = \frac{[BH^+][OH^-]}{[B]} \rightarrow [OH^-] = Kb \frac{[B]}{[BH^+]} \rightarrow = Kb \frac{[Base]}{[conj.Acid]}
$$

salt

HF ↔ H⁺ + F-

0.20 M

C

E

5%

7.2 x 10-4 M

0.20 M

none of these

Common Ion Effect!

5%

7.2 x 10-4 M

0.20 M

none of these

Common Ion Effect!

none of these

7.2 x 10-4 M

0.20 M

Common Ion Effect!

none of these

7.2 x 10-4 M

 $HF \leftrightarrow H^+ + F^-$

7.2 x 10-4 M H^+][0.10] **2.0 M B** $7.2 \times 10^{-4} =$;
, $\bm{[0.20]}$ **1.4 x 10-3 M** $[H^+] = 1.44 \times 10^{-3} M$ **0.20 M none of these**

7.2 x 10-4 M H^+][0.10] **2.0 M B** $7.2 \times 10^{-4} =$;
, $\bm{[0.20]}$ **1.4 x 10-3 M 0.20 M** $[H^+] = 1.44 \times 10^{-3} M$ **none of these**

2.84 $[H^+] = 1.44 \times 10^{-3} M$ **0.70** B. **11.2** $pH = -log(1.44 \times 10^{-3} M)$ **3.14** $pH = 2.84$ **none of these**

2.84 $[H^+] = 1.44 \times 10^{-3} M$ **0.70** В **11.2** $pH = -log(1.44 \times 10^{-3} M)$ **3.14** $pH = 2.84$

Another way to do these calculations!

Henderson-Hasselbalch Equation

A helpful shortcut equation to find the pH or pOH of a buffered solution.

You could also do ICE Tables but those can be really time consuming.

Henderson-Hasselbalch Equation

$$
pH = pKa + log\left(\frac{[A^-]}{[HA]}\right) = pKa + log\left(\frac{[Base]}{[Acid]}\right)
$$

$$
pOH = pKb + log\left(\frac{[BH^+]}{[B]}\right) = pKb + log\left(\frac{[Acid]}{[Base]}\right)
$$

pKa = -log(Ka) pKb = $-log(Kb)$

Just like
$$
pH = -log[H^+]
$$

The acids or bases may be conjugates from the salt!

Henderson-Hasselbalch Equation

$$
pH = pKa + log\left(\frac{[A^-]}{[HA]}\right) = pKa + log\left(\frac{[Base]}{[Acid]}\right)
$$

$$
pOH = pKb + log\left(\frac{[BH^+]}{[B]}\right) = pKb + log\left(\frac{[Acid]}{[Base]}\right)
$$

pKa = -log(Ka) pKb = $-log(Kb)$

Just like
$$
pH = -log[H^+]
$$

The acids or bases may be conjugates from the salt!

$$
pH = pKa + log\left(\frac{[A^-]}{[HA]}\right) = pKa + log\left(\frac{[Base]}{[Acid]}\right)
$$

$$
pOH = pKb + log\left(\frac{[BH^+]}{[B]} \right) = pKb + log\left(\frac{[Acid]}{[Base]}\right)
$$

People get these backwards all the time! If you want pH then ACID goes on the BOTTOM. If you want pOH then BASE goes on the BOTTOM

Careful!

Check your formulas!

1.00 M MgCl² = 2.00 M Cl-

Be on the lookout for salts that have a van't Hoff factor of more than 2...is your [salt] the same as your [ion]

7.2E-4 M 2.0 M 1.4E-3 M 0.20 M none of these Acid solution with a salt added. \cdot **HF** = acid • $NaF = salt$ **The salt has the conjugate base of the acid.** • **F** $pH = pKa + Log$ [conj. Base Salt] $[Acid]$

The degree to which a solution resists change in pH when adding acid/base is called the buffer capacity.

If you keep the RATIO of salt to acid the same but increase the QUANTITIES of each, the pH will stay the same but you have a greater buffer capacity – you can add more acid/base before the pH starts to change

$$
pH = pKa + log\left(\frac{A^{-}}{HA}\right)
$$

Buffer Capacity

 $[A^-]$ **Two solutions are made with the same type of acid and same type of salt. Which has a higher buffer capacity?**

Max buffer capacity if you want it to work best for BOTH adding acid OR base, the "best" buffer would be a 1:1 ratio of salt to acid (or base)

 $[HA]$

Will the pH of the buffered solution be the same or different if these were made with the same acid and the same salt? Why?

The same pH. The pKa will be the same and the ratio of the salt to acid is the same. So, no change in pH

Buffer Capacity

Buffer Capacity

Repetition to build muscle memory is more important than ever with buffer problems.

Commit to eating, sleeping, and doing buffer problems for a few weeks. Your time/efforts will build muscle memory!

When you are in a play you have periods of higher time commitment as you get closer to the play. Must practice!

When you have a big game coming up you have periods of higher time commitment. Must practice!

Find your preferred method. They all have pros and cons. Ice tables

 $Pro = familiar$ Con = takes forever, lots of steps

He-Ha

 $Pro = fast$, on the $Con = Have to recognize to use it$, AP eq. sheet not always solving for pH

Rearranging Law of Mass Action

 $Pro = simple$ Con = Have to recognize to use it, extra step to get to pH or pOH

Make sure to practice ALL methods once in a while. You never know which info they will give you... You want to be able to solve any variety of problems!

YES, it is fine if I used one method on a key and you used another method. No big deal.

Just make sure you are careful about rounding issues.

Make sure to practice ALL methods once in a while. You never know which info they will give you... You want to be able to solve any variety of problems!

YES, it is fine if I used one method on a key and you used another method. No big deal.

Just make sure you are careful about rounding issues. *Example* - Some people like to always use the pH version of He-Ha instead of pOH version when dealing with a base, so they just need to convert $\mathsf{K}_{\textsf{b}}$ into $\mathsf{K}_{\textsf{a}}$ and be careful of where you put your base and conjugate acid.

These can get long, hard, and overwhelming Skip it and come back if you need to!

Sometimes you need to do stoichiometry first! Keep track of when you are using moles versus concentration!

- When things react use stoich to see what is made and what is left over. Write the chemical reaction out if you need to!
- "Mole tables" can be helpful. Sometimes called BCA tables or "Stoichiometry tables." Just a way of organizing your numbers. *LABEL if a mole table, do NOT call it an ICE table!*
- **Make sure you go BACK to [] values for He-Ha or Law of Mass Action type calculations! BE CAREFUL!**

(a) Calculate the pH of a 0.500 L buffer solution composed of 0.700 M formic acid (HCOOH, $Ka = 1.77 \times 10^{-4}$) and 0.500 M sodium formate (NaCOOH)

$$
pH = pKa + Log \frac{[conj. Base salt]}{[acid]}
$$

$$
pH = -log[1.77 \times 10^{-4}] + log \frac{[0.500 M]}{[0.700 M]}
$$

$$
= 3.61
$$

(a) Calculate the pH of a 0.500 L buffer solution composed of 0.700 M formic acid (HCOOH, $Ka = 1.77 \times 10^{-4}$) and 0.500 M sodium formate (NaCOOH) **3.61**

(b) Calculate the pH after adding 60.0 mL of a 1.00 M NaOH solution

(a) Calculate the pH of a 0.500 L buffer solution composed of 0.700 M formic acid (HCOOH, $Ka = 1.77 \times 10^{-4}$) and 0.500 M sodium formate (NaCOOH) **3.61 (b)** Calculate the pH after adding 60.0 mL of a 1.00 M NaOH solution $HCOOH + NaoH \rightarrow H₂O + Na⁺ + COOH$ Weak : Strong Acid : Base Weak: Conj. Conj. : Base Acid . SALT

Weak Acid + corresponding Salt = BUFFER!

(a) Calculate the pH of a 0.500 L buffer solution composed of 0.700 M formic acid (HCOOH, $Ka = 1.77 \times 10^{-4}$) and 0.500 M sodium formate (NaCOOH) **3.61 (b)** Calculate the pH after adding 60.0 mL of a 1.00 M NaOH solution

 $HCOOH + NaOH \rightarrow H₂O + Na⁺ + COOH$

Time for some stoichiometry to figure out how many moles of everything we have to start with

(a) Calculate the pH of a 0.500 L buffer solution composed of 0.700 M formic acid (HCOOH, $Ka = 1.77 \times 10^{-4}$) and 0.500 M sodium formate (NaCOOH) **3.61 (b)** Calculate the pH after adding 60.0 mL of a 1.00 M NaOH solution


```
(a) Calculate the pH of a 0.500 L buffer solution composed of 0.700 M 
formic acid (HCOOH, Ka = 1.77 \times 10^{-4}) and 0.500 M sodium formate
(NaCOOH) 3.61
(b) Calculate the pH after adding 60.0 mL of a 1.00 M NaOH solution
 \frac{\text{Mole}}{\text{table!}} \leftarrow HCOOH + NaOH \rightarrow H<sub>2</sub>O + Na<sup>+</sup> + COOH<sup>-</sup>
 table!
        0.350 mol |0.060 mol |0.250 mol |0.250 mol
```

```
(a) Calculate the pH of a 0.500 L buffer solution composed of 0.700 M 
formic acid (HCOOH, Ka = 1.77 \times 10^{-4}) and 0.500 M sodium formate
(NaCOOH) 3.61
(b) Calculate the pH after adding 60.0 mL of a 1.00 M NaOH solution
 \frac{\text{Mole}}{\text{table}} \geq HCOOH + NaOH \rightarrow H<sub>2</sub>O + Na<sup>+</sup> + COOH<sup>-</sup>
 table!
        0.350 mol |0.060 mol |0.250 mol |0.250 mol
          -0.060 -0.060 +0.060 +0.060 +0.060
```
(a) Calculate the pH of a 0.500 L buffer solution composed of 0.700 M formic acid (HCOOH, $Ka = 1.77 \times 10^{-4}$) and 0.500 M sodium formate (NaCOOH) **3.61 (b)** Calculate the pH after adding 60.0 mL of a 1.00 M NaOH solution $HCOOH + NaOH \rightarrow H₂O + Na⁺ + COOH$ 0.350 mol $|0.060$ mol $|0.250$ mol $|0.250$ mol -0.060 -0.060 $+0.060$ $+0.060$ $+0.060$ **0.290** 0 0.060 0.310 0.310 **Mole table!**

BACK TO [] FOR THE HE-HA CALCULATIONS!

TOTAL solution volume!!! Your volume changed as you added the NaOH!

 $= 3.78$

Figure 14.6.2: This diagram shows the buffer action of these reactions.

Crash Course Video *Buffers, the Acid Rain Slayer* **<https://youtu.be/8Fdt5WnYn1k?si=gaA6JxbNHhhIN-Nt>**

Bozeman Science Video *pH and Buffers* **<https://youtu.be/rIvEvwViJGk?si=CrPu5FtV0xLr8Amu>**

Professor Dave Video

Acid-Base Equilibria and Buffer Solutions **https://youtu.be/jdmHjFp_35I?si=jncpa2ZIOWpPH72Z**

YouTube Link to Presentation

<https://youtu.be/1c8eybhSmck>